Home
Class 11
MATHS
If f(x)=[|x|+1, x<0 0, x=0|x|-1, x >0...

If `f(x)=[|x|+1, x<0 0, x=0|x|-1, x >0`

Text Solution

AI Generated Solution

To determine the values of \( a \) for which the limit \( \lim_{x \to a} f(x) \) exists, we need to analyze the piecewise function defined as: \[ f(x) = \begin{cases} |x| + 1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ |x| - 1 & \text{if } x > 0 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(,|x|+1, x lt 0),(, 0,x=0),(,|x|-1, x gt 0):}" then "underset(x to a)lim f(x) exists for all

x 0 12. The jump of f(x) x 1, x -0 b) -1 a) 0 13. At 0, the function f(x) X x is a) continuous only c) 2 b) discontinuous

If f(x)=x(x-1), 0 le x le 1, and f(x+1)=f(x) AA x in R , then |int_(2)^(4)f(x)dx| is _____________

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

Write the minimum value of f(x)=x+(1)/(x),x>0

For the function f(x)={[x-1 ,x 0]},lim_(x rarr0^(+))f(x) and lim_(x rarr0^(-))f(x) are

For the function f(x)={[x-1 ,x 0]},lim_(x rarr0^(+))f(x) and lim_(x rarr0^(-))f(x) are

Discuss the continuity of the f(x) at the indicated point: f(x)=|x|+|x-1| at x=0,1

Discuss the continuity of f(x)=|x|+|x-1| at x=0 and x=1.

If f(x)=(|x-1|)/(x-1),x!=0 ,Examine the continuity