Home
Class 11
MATHS
[" Let "tan^(-1)y=tan^(-1)x+tan^(-1)((2x...

[" Let "tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))," where "|x|<(1)/(sqrt(3))" .Then a value of "],[[" (1) "(3x-x^(3))/(1+3x^(2))," (2) "(3x+x^(3))/(1+3x^(2))," (3) "(3x-x^(3))/(1-3x^(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3 . Then, the value of y is

Let, tan^-1y=tan^-1x+tan^-1((2x)/(1-x^2)) , where absx lt 1/sqrt3 . Then a value of y is:

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

Prove that tan^(-1)(x+1)+tan^(-1)(x-1)=tan^(-1)((2x)/(2-x^2))

tan^(-1)x+tan^(-1) (1-x) = 2 tan ^(-1) sqrt(x(1-x))

Tan^(-1)(x/y)-Tan^(-1)((x-y)/(x+y))=

tan ^(-1)((1)/(x+y))+tan ^(-1)((y)/(x^(2)+x y+1))=

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is

2 tan ( tan^(-1)(x)+ tan^(-1)(x^(3))) " where " x in R - {-1,1} is equal to