Home
Class 12
MATHS
If x=cos(2t)and y=sin^(2)t, then what is...

If `x=cos(2t)and y=sin^(2)t`, then what is `(d^(2)y)/(dx^(2))` equal to?

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2),y=t^(3) what is (d^(2)y)/(dx^(2)) equal to ?

If x=logt and y=t^(2)-1 , then what is (d^(2)y)/(dx^(2)) at t = 1 equal to?

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x=log(1+t^(2)),y=2t-2tan^(-1)t, then at t = 1(d^(2)y)/(dx^(2)) equals-

If x=t^(3)+t+5 and y=sin t then (d^(2)y)/(dx^(2))

If x=a(cos t + log tan (t/2)),y=a sin t , then what is (d^2y)/(dx^2) at t=(pi)/3 .

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?