Home
Class 12
MATHS
[" If domain of "y=f(x)" is "[-3,2]," th...

[" If domain of "y=f(x)" is "[-3,2]," then domain of "f(|[x]|)" is equal to "],[" [Note: "[k]" denotes greatest integer function less than or eaual to "k" ) "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re \ [.] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e re[] denotes the greatest integer function.

If the domain of y=f(x) is [-3,2] ,then find the domain of g(x)=f(||x]|), wher [] denotes the greatest integer function.

If the domain of y=f(x) is [-3,2] , then find the domain of g(x)=f([x]), where [] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If the domain of y=f(x)i s[-3,2], then find the domain of g(x)=f(|[x]|),w h e r[] denotes the greatest integer function.

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

If domain of f(x) is [-1,2] then domain of f(x]-x^(2)+4) where [.] denotes the greatest integer function is