Home
Class 12
MATHS
" 29."|[a^(2)/2a,2a+1,1],[2a+1,a+2,1],[3...

" 29."|[a^(2)/2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[a^2+2a,2a+1,1],[2a+1,a+2,1],[3,3,1]|=(a-1)^3

Evaluate the following: |[a^2+2a, 2a+1, 1],[2a+1, a+2, 1],[3,3,1]|

Show that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using properties of determinants prove that |{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}|=(a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Using properties of determinants, prove that |(a^2+2a, 2a+1,1), (2a+1, a+2, 1), (3,3,1)| = (a-1)^3

Prove that: {:|(a^2+2a,2a+1,1), (2a+1,a+2,1),(3,3,1)|:}=(a-1)^3 .

Using properties of determinant, prove that |{:(a^(2)+2a, 2a+1, 1), (2a+1, a+2, 1), (3, 3, 1):}|=(a-1)^(3)

D=|{:(a^2+2a,2a+1,1),(2a+1,a+2,1),(3,3,1):}| then,

A=[[1,2,3],[3,-2,1],[4,2,1]] A^-1