Home
Class 12
MATHS
[" Number of integral values of "x" in t...

[" Number of integral values of "x" in the domain of fiunction "f(x)=sqrt(ln|ln|x||)+sqrt(7|x|-|x|^(2)-10)],[" isequalto "],[[" (A) "4," (B) "5," (C) "6," (D) "7]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values of x in the domain of function f (x)= sqrt(ln(|ln|x||)) + sqrt(7|x|-(|x|)^2-10) is equal to

Number of integral values of x in the domain of function f(x)=sqrt(ln(|ln x|))+sqrt(7|x|-(|x|)^(2)-10) is equal to

The domain of function f(x)=sqrt(log_(x^(2))(x)) is

Domain of the function f(x) = log(sqrt(x-4)+sqrt(6-x))

Domain of the function f(x)=log(sqrt(x-4)+sqrt(6-x))

domain of the function f(x)=sqrt(ln((1)/(|sin x-1|))))

The domain of the function f(x)=sqrt(log_(x^(2)-1)x) is

The domain of f(x)=sqrt(log((1)/(|sinx|))) is :