Home
Class 12
MATHS
Prove that int(0)^(pi)(xtanx)/((secx+tan...

Prove that `int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(xtanx dx)/(secx+tanx)

int_(0)^(pi//2)(tanx)/((1+tanx))dx=?

int_(0)^(pi)(xtanx)/(secx+cosx)dx=

int_(0)^(pi)(x tanx)/((secx+cosx))dx=(pi^(2))/(4)

int_(0)^(pi)(tanx)/(secx+cosx)dx=

Evaluate : int_0^pi(xtanx)/(secx+tanx)dx

Evaluate : int_0^pi(xtanx)/(secx+tanx)dx

int_(0)^(pi)(x tanx)/(secx+cosx)dx is

int_(0)^(pi)(x tanx)/(secx+cosx)dx is