Home
Class 11
MATHS
The normal at a variable point P on the ...

The normal at a variable point `P` on the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` of eccentricity `e` meets the axes of the ellipse at `Qa n dRdot` Then the locus of the midpoint of `Q R` is a conic with eccentricity `e '` such that `e^(prime)` is independent of `e` (b) `e^(prime)=1` `e^(prime)=e` (d) `e^(prime)=1/e`

Promotional Banner

Similar Questions

Explore conceptually related problems

The normal at a variable point P on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 of eccentricity e meets the axes of the ellipse at Qa n dRdot Then the locus of the midpoint of Q R is a conic with eccentricity e ' such that (a) e^(prime) is independent of e (b) e^(prime)=1 (c) e^(prime)=e (d) e^(prime)=1/e

The normal at a variable point P on the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 of eccentricity e meets the axes of the ellipse at Qa n dRdot Then the locus of the midpoint of Q R is a conic with eccentricity e ' such that (a) e^(prime) is independent of e (b) e^(prime)=1 (c) e^(prime)=e (d) e^(prime)=1/e

The normal at a variable point P on the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 of eccentricity e meets the axes of the ellipse at Q and R .Then the locus of the midpoint of QR is a conic with eccentricity e' such that e' is independent of e(b)e'=1e'=e(d)e'=(1)/(e)

The normal at a point P on the hyperbola b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) of eccentricity e, intersects the coordinates axes at Q and R respectively. Prove that the locus of the mid-point of QR is a hyperbola of eccentricity (e )/(sqrt(e^(2)-1)) .

Locus of mid-point of the focal chord of ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 with eccentricity e is

If normal at any point P to the ellipse +(x^(2))/(a^(2))+(y^(2))/(b^(2))=1,a>b meets the axes at M and N so that (PM)/(PN)=(2)/(3), then value of eccentricity e is

If e be the eccentricity of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) = 1 , then e =

Let S and S'' be the fociof the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose eccentricity is e. P is a variable point on the ellipse. Consider the locus the incenter of DeltaPSS'' The eccentricity of the locus of the P is

Let S and S' be the fociof the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose eccentricity is e. P is a variable point on the ellipse. Consider the locus the incenter of DeltaPSS' The eccentricity of the locus of the P is

Let S and S' be the foci of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 whose eccentricity is e. P is a variable point on the ellipse. Consider the locus the incentre of DeltaPSS' . The locus of the incenter is a\an