Home
Class 12
MATHS
f(x)=tan^(-1) (sinx) is increasing in...

`f(x)=tan^(-1) (sinx)` is increasing in

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=tan^(-1)(sin x) is increasing in

f(x)=tan^(-1)(sinx) is decreasing in

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in :

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in

Show that f(x)=tan^(-1)(sinx+cosx) is an increasing function on the interval (0,\ pi//4) .

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)