Home
Class 11
MATHS
If f(x)={(mx^2+n, x < 0),(nx+m , 0le x l...

If` f(x)={(mx^2+n, x < 0),(nx+m , 0le x le1),(nx^3+m, x >1):}` .
For what integers m and n does both `lim_(x rarr 0)f(x)` and` lim_(x rarr 1)f(x)` exist?

Text Solution

AI Generated Solution

To determine the integers \( m \) and \( n \) for which both limits \( \lim_{x \to 0} f(x) \) and \( \lim_{x \to 1} f(x) \) exist, we need to analyze the piecewise function given: \[ f(x) = \begin{cases} mx^2 + n & \text{if } x < 0 \\ nx + m & \text{if } 0 \leq x \leq 1 \\ nx^3 + m & \text{if } x > 1 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT|Exercise SOLVED EXAMPLES|25 Videos
  • LIMITS AND DERIVATIVES

    NCERT|Exercise MISCELLANEOUS EXERCISE|30 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={mx^(2)+n,x 1}. For what integers m and n does both lim_(x rarr0)f(x) and lim_(x rarr1)f(x) exist?

If f(x)={{:(mx^(2)+n",", x lt 0), (nx+m",", 0 le x le 1), (nx^(3)+m",", x gt 1):} . For what integers m and n does lim_(x to 0)f(x)" and "lim_(x to 1)f(x) exist ?

Find lim_(x rarr0)f(x) and lim_(x rarr1)f(x), where f(x)=[(2x+3),x 0

lim_(x rarr0)f(x)and(lim)_(x rarr1)f(x), where f(x)=[2x+3,x 0

If lim_(x rarr a)[f(x)g(x)] exists,then both lim_(x rarr a)f(x) and lim_(x rarr a)g(x) exist.

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=

f(x)=x,x 0 then find lim_(x rarr0)f(x) if exists

f(x)={mx-3, when x =2} For what values of m does lim_(x rarr2)f(x) exist when ]}

1.if lim_(x rarr a)f(x) and lim_(x rarr a)g(x) both exist,then lim_(x rarr a){f(x)g(x)} exists.2. If lim_(x rarr a){f(x)g(x)} exists,then both lim_(x rarr a)f(x) and lim_(x rarr a)g(x) exist.Which of the above statements is/are correct?

For the function f(x)={[x-1 ,x 0]},lim_(x rarr0^(+))f(x) and lim_(x rarr0^(-))f(x) are