Home
Class 6
MATHS
(1)/(3+(1)/(3+(1)/(3-(1)/(3))))=...

`(1)/(3+(1)/(3+(1)/(3-(1)/(3))))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The simplified of ((1)/(3)-:(1)/(3) xx(1)/(3))/((1)/(3)-:(1)/(3)"of"(1)/3)-(1)/(9) is

2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...] =

The simplified value of ((1)/(3)-:(1)/(3)xx(1)/(3))/((1)/(3)-:(1)/(30)f(1)/(3))-(1)/(9) is

I:2[((1)/(3))+(1)/(3)((1)/(3))^(3)+(1)/(5)((1)/(3))^(5)+...]=log_(e)2 II:2[((1)/(2))+(1)/(3)((1)/(2))^(3)+(1)/(5)((1)/(2))^(5)+...]=log_(e)2

(2)/(3) -((1)/(2) -(1)/(3))/((1)/(2)+(1)/(3))xx3(1)/(3)+(5)/(6) =?

e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)*(1)/(3^(5))+….))=

e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)*(1)/(3^(5))+….))=

1+((1)/(3)+(1)/(3^(2)))+((1)/(3^(3))+(1)/(3^(4))+(1)/(3^(5)))+ sum of the terms in the n^(th) bracket =

Find the sum of the following series to infinity: 1-(1)/(3)+(1)/(3^(2))-(1)/(3^(3))+(1)/(3^(4))+oo