Home
Class 12
MATHS
If k in N and IR=int(-2kpi)^(2kpi) |sin...

If `k in N and I_R=int_(-2kpi)^(2kpi) |sin x|[sinx]dx` , where bl denotes the greatest integer function, then `sum_(k=1)^100 I_R` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If k in N and I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx , where [.] denotes the greatest integer function, then int_(k=1)^(100) I_(k) equal to

If k in N and I_(k)=int_(-2kp)^(2kpi) |sin x|[sin x]dx , where [.] denotes the greatest integer function, then int_(k=1)^(100) I_(k) equal to

If I=int_(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest integer function) then the value of I is

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

int_(pi/2)^(3pi/2) [2sinx]dx is equal to [x] denotes the greatest integer function

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to