Home
Class 12
MATHS
If y=(cot^(-1)x)^(2), then show that (x^...

If `y=(cot^(-1)x)^(2)`, then show that `(x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=(cot^(-1)x)^(2), thenshowthat (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)

If y=(cot^(-1)x)^(2) , show that (1+x^(2))^(2).(d^(2)y)/(dx^(2))+2x(1+x^(2)).(dy)/(dx)=2

If y=(tan^(-1)x^(2)), show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2

If y = (tan^(-1)x)^(2) then show that (x^(2) + 1)^(2) (d^2 y)/(dx^2) + 2x(x^2 + 1)(dy)/(dx) = 2

If y=e^(2tan^(-1)x) , the show that : (1+x^(2))^(2)(d^(2)y)/(dx^(2))+2x(1+x^(2))dy/dx=4y .

If y=csc^(-1)x,x>1, then show that x(x^(2)-1)(d^(2)y)/(dx^(2))+(2x^(2)-1)(dy)/(dx)=0

If y=(tan^(-1)x)^2 then show that (x^2+1)^2 (d^2y)/(dx^2)+2x(x^2+1)((dy)/(dx))=2 .

If y= (tan^(-1)x)^2, then show that (1+x^2)^2(d^2y)/(dx^2)+2x(1+x^2)(dy)/(dx) =2 .

If y=tan^(-1)x , then show that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0