Home
Class 12
MATHS
int0^(2pi) (e^|sinx| cosx)/(1+e^tanx) dx...

`int_0^(2pi) (e^|sinx| cosx)/(1+e^tanx)` dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2pi)(sinx+cosx)dx=

int_(0)^(2pi)(sinx+cosx)dx=

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx)) dx is equal to e+1 (b) 1-e e-1 (d) none of these

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int e^sinx cosx dx

The integral int_(-pi//2)^(pi//2)(e^(|sinx|).cosx)/(1+e^(tanx))dx equals

int_(-pi//2)^(pi//2)(e^(|sinx|).cosx)/((1+e^(tanx)))dx is = a) e+1 b) 1-e c) e-1 d)None of these

int_(0)^(pi//2) e^x(sinx+cosx) dx