Home
Class 12
MATHS
if tan^-1 {(sqrt(1+x^2)-sqrt(1-x^2))/(sq...

if `tan^-1 {(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha` then `x^2` is:

Text Solution

Verified by Experts

Let, `tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))], -1ltxlt1, x ne 0`
Put `x^(2)=cos2theta`
`:. y = tan^(-1)'((sqrt(1+cos2theta)+sqrt(1-cos2theta))/(sqrt(1+cos2theta)-sqrt(1-cos2theta)))`
`=tan^(-1)((sqrt(1+2cos^(2)theta-1)+sqrt(1-1+2sin^(2)theta))/(sqrt(1+2cos^(2)theta-1)-sqrt(1-1+2sin^(2)theta)))`
`= tan^(-1)'((sqrt(2)costheta+sqrt(2)sintheta)/(sqrt(2)costheta-sqrt(2)sin theta))= tan^(-1)[(sqrt(2) (costheta+sintheta))/(sqrt(2)(costheta-sintheta))]`
` =tan^(-1)((costheta+sintheta)/(costheta-sintheta))=tan^(-1)'(((costheta+sintheta)/(costheta))/((costheta-sintheta)/(costheta)))`
`= tan^(-1)'((1+tantheta)/(1-tantheta))`
`= tan^(-1)((1+tantheta)/(1-tantheta))`
`= tan^(-1)tan'((pi)/(4)+theta), [:'tan(a+b)=(tana+tanb)/(1-tana.tanb)]`
`= (pi)/(4)+theta = (pi)/(4)+(1)/(2)cos^(-1)x^(2) , [:' 2theta=cos^(-1)x^(2) rArr theta = (1)/(2) cos^(-1) x^(2)]`
`:. (dy)/(dx) = (d)/(dx)(pi/4)+(d)/(dx)(1/2 cos^(-1)x^(2))`
`= 0+(1)/(2).(-1)/(sqrt(1-x^(4))).(d)/(dx)x^(2)=(1)/(2).(-2x)/(sqrt(1-x^(4)))= (-x)/(sqrt(1-x^(4)))`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha , then x^2= sin2\ alpha (b) sin\ alpha (c) cos2\ alpha (d) cos\ alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha , then x^2= sin2\ alpha (b) sin\ alpha (c) cos2\ alpha (d) cos\ alpha

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha, then prove that x^2=sin2alpha

If tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1-x^(2))+sqrt(1-x^(2)))}=alpha, then prove that x^(2)=sin2 alpha

If "tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))=alpha , then prove that x^(2) =sin 2alpha .

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=alpha" then prove that "x^(2)=sin2alpha.

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

If tan^(-1)((sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))))=theta , then prove that, sin 2 theta=x^(2) .