Home
Class 11
MATHS
1^(2)+2^(2)+3^(2)+4^(2)+n^(2)=(n(n+1)(2n...

1^(2)+2^(2)+3^(2)+4^(2)+n^(2)=(n(n+1)(2n+1))/(6)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : 1^(2)+2^(2)+3^(2)+...+n^(2)=(n(n+1)(2n+1))/(6)

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(2) +3^(2) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

Match the following . {:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}

1^(2)+2^(2)+3^(2)+..........+n^(2)=(n(n+1)(2n+1))/(6)

1 ^(2) + 2^(2) + 3^(2) + . . . + n^(2) = (n (n + 1) (2 n + 1))/( 6)

Prove by mathematical induction 1^(2)+2^(2)+3^(2)+.....+(n+1)^(2)=((n+1)(n+2)(n+3))/(6)

1^2+2^2+3^2++n^2=(n(n+1)(2n+1))/6

For all n geq1 , prove that 1^2+2^2+3^2+4^2+dotdotdot+n^2= (n(n+1)(2n+1))/6

For all n gt 1 , prove that 1^(2)+2^(2)+3^(2)+4^(2)+...........+n^(2) = (n(n+1)(2 n+1))/(6)