Home
Class 12
MATHS
If |vec(a)+vec(b)||=|vec(a)-vec(b)| then...

If `|vec(a)+vec(b)||=|vec(a)-vec(b)|` then show that `vec(a)` and `vec(b)` are perpendicular to each other.

Promotional Banner

Similar Questions

Explore conceptually related problems

If abs(vec(a)+vec(b))=abs(vec(a)-vec(b)) , then show that vec(a) and vec(b) are perpendicular to each other.

If |vec(a)+vec(b)|=|vec(a)-vec(b)| , prove that vec(a) and vec(b) are perpendicular.

For the vector vec(a) and vec (b) if |vec(a) + vec(b)| = |vec(a) - vec(b)| , show that vec(a) and vec (b) are perpendicular

If |vec a+vec b|=|vec a-vec b|, show that the vectors vec a and vec b are perpendicular to each other.

Two vectors vec(a) and vec(b) are perpendicular to each other if vec(a).vec(b)=0 .

If vec a and vec b are two non- zero vectors such that | vec a + vec b| = |vec a - vec b| , then show that vec a and vec b are perpendicular.

If vec(a) and vec(b) are two vectors such that |vec(a) + vec(b)| = |vec(a)| , then prove tat 2vec(a) + vec(b) is perpendicular to vec(b) .

If vec(a),vec(b), vec(c) are such that vec(a).vec(b) = vec(a).vec(c) then show that vec(a) = 0 or vec(b) = vec(c) or vec(a) is perpendicular to vec(b) - vec(c) .

If |quad vec a+ vec b|=|quad vec a- vec b| , prove that vec a and vec b are perpendicular.