Home
Class 12
MATHS
Show that the vectors vec a - vec b, vec...

Show that the vectors `vec a - vec b, vec b - vec c , vec c - vec a` are coplaner.

Promotional Banner

Similar Questions

Explore conceptually related problems

For any three vectors vec a,vec b and vec c , show that vec a- vec b,vec b- vec c and vec c- vec a are coplanar.

Show that the vectors vec a, vec b and vec c are coplanar if vec a + vec b, vec b + vec c, vec c+ vec a are coplanar.

For any three vectors vec(a), vec(b) and vec(c) , show that vec(a) - vec(b), vec(b) - vec(c) , vec(c) - vec(a) are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Show that the vectors 2vec a-vec b+3vec c,vec a+vec b-2vec c and vec a+vec b-3vec c are non-coplanar vectors (where vec a,vec b,vec c are non-coplanar vectors)

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that the vectors vec a,vec b and vec c are coplanar if vec a+vec b,vec b+vec c and vec c+vec a are coplanar.

Show that vectors vec a,vec b,vec c are coplanar if vec a+vec b,vec b+vec c,vec c+vec a are coplanar.