Home
Class 12
MATHS
If y="sin"(logx), then prove that (x^2d^...

If `y="sin"(logx),` then prove that `(x^2d^2y)/(dx^2)+x(dy)/(dx)+y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .

If y=acos(logx)+bsin(logx), prove that x^2(d^2y)/(dx^2)+\ x(dy)/(dx)+y=0

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0