Home
Class 12
MATHS
10x +10 log,ds equals x", +10, (A) 10-x+...

10x +10 log,ds equals x", +10, (A) 10-x+C (C) (1O-+C (B) 10+C D Mog (10+x)+C

Promotional Banner

Similar Questions

Explore conceptually related problems

int(10 x^9+10 x^x(log)_(e^(10))dx)/(x^(10)+10^x) equals(A) 10^x-x^(10)+C (B) 10^x+x^(10)+C (C) (10^x-x^(10))^(-1)+C (D) log(10^x+x^(10))+C

int(10x^(9)+10x^(x)log_(e^(10))dx)/(x^(10)+10^(x)) equals (A) 10^(x)-x^(10)+C (B) ( C) log(10^(x)+x^(10))+C

int( 10 x^9+10^x log _e 10)/(x^(10)+10^x) d x equal a) 10^x-x^(10)+C b) 10^x+x^(10)+C c) (10^x-x^(10))^-1+C d) log (10^x+x^(10))+C

If the fourth term of (sqrt(x^(1/(1+(log)_(10)x))+root(12)x))^6 is equal to 200 and x >1, then x is equal to (A)10sqrt(2) (B) 10 (C) 10^4 (D) 100

The least possible is integral value of x satisfying the inequality .^10C_(x-1)gt2.^10C_x is (A) 8 (B) 9 (C) 10 (D) 11

The least possible is integral value of x satisfying the inequality .^10C_(x-1)gt2.^10C_x is (A) 8 (B) 9 (C) 10 (D) 11

intdx/(x(1+x^10))= (A) 1/10 log((1+x^10)/x^10)+c (B) 1/10 log(x^10/(1+x^10))+c (C) 1/(1+x^10)^2+c (D) none of these

intdx/(x(1+x^10))= (A) 1/10 log((1+x^10)/x^10)+c (B) 1/10 log(x^10/(1+x^10))+c (C) 1/(1+x^10)^2+c (D) none of these

The constant term in the expansion of [1-(x-2)^(2)]^(10) is equal to a) 2^(10) b) 6^(10) c) 4^(10) d) 3^(10)

If 10^x=64 , what is the value of 10^(x/2+1) ? (a) 18 (b) 42 (c) 80 (d) 81