Home
Class 12
MATHS
If x = e - 7, prove that - log x (1 + lo...

If x = e - 7, prove that - log x (1 + log x) 2 dx 07 A27

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^Y = e^[X - Y] , prove that dy/dx= log x/(1+logx)^2 .

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If y log x=x-y prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)