Home
Class 11
MATHS
the derivative of tan^-1 (6xsqrtx)/(1-9x...

the derivative of `tan^-1 (6xsqrtx)/(1-9x^3)` is `sqrtx g(x)` then `g(x)` is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is sqrt(x)dotg(x), then g(x) equals:

If for x(0,(1)/(4)), the derivative of tan^(-1)((6x sqrt(x))/(1-9x^(3))) is sqrt(x)g(x), then g(x) equals: (1)(3x)/(1-9x^(3))(2)(3)/(1+9x^(3))(3)(9)/(1+9x^(3)) (4) (3x sqrt(x))/(1-9x^(3))

If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is sqrt(x)dotg(x), then g(x) equals: (3x)/(1-9x^3) (2) 3/(1+9x^3) (3) 9/(1+9x^3) (4) (3xsqrt(x))/(1-9x^3)

If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is sqrt(x)dotg(x), then g(x) equals: (3x)/(1-9x^3) (2) 3/(1+9x^3) (3) 9/(1+9x^3) (4) (3xsqrt(x))/(1-9x^3)

If for x (0,1/4), the derivative of tan^(-1)((6xsqrt(x))/(1-9x^3)) is sqrt(x)dotg(x), then g(x) equals: (3x)/(1-9x^3) (2) 3/(1+9x^3) (3) 9/(1+9x^3) (4) (3xsqrt(x))/(1-9x^3)

If for x in (0,1/4) , the derivation of tan^(-1)((6xsqrtx)/(1-9x^3)) is sqrt(xg(x) , then find g(x).

"If for "x in (0,(1)/(4))," the derivative of "tan^(-1)((6xsqrt(x))/(1-9x^(3)))" is "sqrt(x)cdotg(x), then g(x) equals

What is the derivative of tan^(-1)((sqrtx-x)/(1+x^(3//2))) at x = 1?