Home
Class 11
MATHS
nCr + 2. nC(r-1) + nC(r-2) = (n+2)Cr (2...

`nCr + 2. nC(r-1) + nC(r-2) = (n+2)Cr (2 <= r <= n)`

Text Solution

Verified by Experts

Here, we will use the property of binomial coefficients,
`n_(C_r) + n_(C_(r-1)) = (n+1)_(C_r)`
`L.H.S. = n_(C_r)+2*n_(C_(r-1))+n_(C_(r-2))`
`= n_(C_r)+n_(C_(r-1))+n_(C_(r-1))+n_(C_(r-2))`
Using the above property,
`=(n+1)_(C_r)+(n+1)_(C_(r-1))`
Again using the above property,
`=(n+2)_(C_r) = R.H.S.`
Promotional Banner

Similar Questions

Explore conceptually related problems

nC_r+2. nC_(r-1)+nC_(r-2)=

Prove that "^nC_r + 2. ^nC_(r-1) + ^nC_(r-2) = ^(n+2)C_r

Show that ^nC_r+2. ^nC_(r-1)+ ^nC_(r-2)= ^(n+2)C_r

If 2lerlen show that ^nC_r +2 ^nC_(r-1) +^nC_(r-2)=^(n+2)C_r

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

Prove that nC_r+3.nC_(r-1)+3nC_(r-2)+nC_(r-3)=(n+3)C_r

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r