Home
Class 11
MATHS
Show that, nCr + (n-1)C(r-1) + (n-1)C(r-...

Show that, nCr + (n-1)C(r-1) + (n-1)C(r-2) = (n+1)Cr

Promotional Banner

Similar Questions

Explore conceptually related problems

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

If 2lerlen show that ^nC_r +2 ^nC_(r-1) +^nC_(r-2)=^(n+2)C_r

Prove that "^nC_r + 2. ^nC_(r-1) + ^nC_(r-2) = ^(n+2)C_r

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

Show that ^nC_r+2. ^nC_(r-1)+ ^nC_(r-2)= ^(n+2)C_r

Show that the HM of (2n+1)C_(-) and (2n+1)C_(-)(r+1) is (2n+1)/(n+1) xx of (2n)C_(r) Also show that sum_(r=1)^(2n-1)(-1)^(r-1)*(r)/(2nC_(r))=(n)/(n+1)

Verify that ""^nC_r= frac (n)(r) "^(n-1)C_(r-1) and hence prove that "^nC_r= (n!)/(r!(n-r)!) .

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r