Home
Class 11
MATHS
Prove that (cos alpha+ cos beta)^2+(sin...

Prove that `(cos alpha+ cos beta)^2+(sin(alpha)+sin beta)^2=4cos^2((alpha-beta)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

Prove that (cos alpha-cos beta)^2+(sin alpha-sin beta)^2=4sin^2((alpha-beta)/2)

Prove that (cos alpha+cos beta)^(2)+(sin alpha -sin beta)^(2)=4 cos^(2) ((alpha+beta)/(2))

Prove that (cos alpha - cos beta)^(2) +(sin alpha - sin beta)^(2) = 4 "sin"^(2) (alpha-beta)/2

Prove that (cos2 alpha-cos 2 beta)/(sin2 alpha+sin2 beta)=tan(beta-alpha)

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

(cos alpha + cos beta) ^ (2) + (sin alpha-sin beta) ^ (2) = 4 (cos ^ (2) (alpha + beta)) / (2)

Prove that 2sin^(2)beta+4cos(alpha+beta)sin alpha sin beta+cos2(alpha+beta)=cos2 alpha

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha