Home
Class 14
MATHS
[log(a^2/(bc))+log(b^2/(ac))+log(c^2/(ab...

`[log(a^2/(bc))+log(b^2/(ac))+log(c^2/(ab))]` is equal to a. `0` b. `1` c. `2` d. `abc`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that log(a^(2)/(bc))+log(b^(2)/(ca))+log(c^(2)/(ab))=0

Prove that (vi) log((a^2)/(bc)) + log ((b^2)/(ca)) + log ((c^2)/(ab)) = 0

Prove "log"(a^(2))/(bc) + "log"(b^(2))/(ca) + "log"(c^(2))/(ab) = 0 .

(1)/(log_(bc)abc)+(1)/(log_(ac)abc)+(1)/(log_(ab)abc) is equal to

(1/(log_(a)bc+1) + 1/(log_(b) ac +1) + 1/(log_(c)ab+1)+1) is equal to:

(1)/((log_(a)bc)+1)+(1)/((log_(b)ac)+1)+(1)/((log_(c)ab)+1) is equal to

if c(a-b)=a(b-c) then (log(a+c)+log(a-2b+c))/(log(a+c)) is equal to