Home
Class 12
MATHS
Number of solutions of the trigonometric...

Number of solutions of the trigonometric equation `cos^2( pi/4(cosx + sinx))- tan^2( x + pi/4tan^2 x) = 1` in `[-2pi, 2pi]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

Solve the equation: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

If the equation cos^(2)((pi)/4(sinx+sqrt(2)cos^(2)x))-tan^(2)(x+(pi)/4tan^(2)x)=1 then x=

Number of solution of the equation 4sin^2x-4cos^3x-4cosx+9=0 in x in[-2pi,2pi] is

Solve the equation for x: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1

Solve the equation for x: cos^2[pi/4(sinx+sqrt(2)cos^2x)]-tan^2[x+pi/4tan^2x]=1