Home
Class 12
MATHS
Let, f: X->y,f(x) = sin x + cos x + 2sqr...

Let, `f: X->y,f(x) = sin x + cos x + 2sqrt2` be invertible. Then which `X->Y` is not possible? a) `[pi/4,(5pi)/4] ->[sqrt(2),3sqrt(2)]` b) `[-(3pi)/4,pi/4]->[sqrt(2),3sqrt(2)]` c) `[-(3pi)/4,(3pi)/4]->[sqrt(2),3sqrt(2)]` d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f: XrarrY,f(x)=sinx+cosx+2sqrt(2) be an invertible function. Then which XrarrY is not possible? (a) [pi/4,(5pi)/4]rarr[sqrt(2,)3sqrt(2)] (b) [-(3pi)/4,pi/4]rarr[sqrt(2,)3sqrt(2)] (c) [-(3pi)/4,(3pi)/4]rarr[sqrt(2,)3sqrt(2)] (d) none of these

Let f: XrarrY,f(x)=sinx+cosx+2sqrt(2) be an invertible function. Then which XrarrY is not possible? (a) [pi/4,(5pi)/4]rarr[sqrt(2,)3sqrt(2)] (b) [-(3pi)/4,pi/4]rarr[sqrt(2,)3sqrt(2)] (c) [-(3pi)/4,(3pi)/4]rarr[sqrt(2,)3sqrt(2)] (d) none of these

Let f: Xrarryf(x)=s inx+cosx+2sqrt(2) be invertible. Then which XrarrY is not possible? [pi/4,(5pi)/4]rarr[sqrt(2,)3sqrt(2)] [-(3pi)/4,pi/4]rarr[sqrt(2,)3sqrt(2)] [-(3pi)/4,(3pi)/4]rarr[sqrt(2,)3sqrt(2)] none of these

Let f:X rarr yf(x)=s in x+cos x+2sqrt(2) be invertible.Then which X rarr Y is not possible? [(pi)/(4),(5 pi)/(4)]rarr[sqrt(2,3)sqrt(2)][-(3 pi)/(4),(pi)/(4)]rarr[sqrt(2,3)sqrt(2)][-(3 pi)/(4),(3 pi)/(4)]rarr[sqrt(2,3)sqrt(2)] none of these

cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt(2) sin x

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx

cos((3pi)/(4)+x)-cos((3pi)/(4)-x) = -sqrt(2)sinx