Home
Class 11
MATHS
If alpha^3+beta^3+gamma^3=(alpha+beta+ga...

If `alpha^3+beta^3+gamma^3=(alpha+beta+gamma)^3` where `alpha,beta,gamma !=0` then `(alpha+beta+gamma)^7/(alpha^7+beta^7+gamma^7)` is `(alpha+beta+gamma !=0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[[alpha,beta,gamma],[alpha^2,beta^2,gamma^2],[alpha^3,beta^3,gamma^3]]|= alpha beta gamma (alpha-beta)(beta-gamma)(gamma-alpha)

If alpha, beta, gamma are the roots of x^(3)+px+q=0 then |(alpha, beta, gamma),(beta, gamma, alpha),(gamma, alpha, beta)|=

If alpha,beta,gamma are such that alpha+beta+gamma=2alpha^(2)+beta^(2)+gamma^(2)=6,alpha^(3)+beta^(3)+gamma^(3)=8, then alpha^(4)+beta^(4)+gamma^(4)

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

cos (alpha + beta + gamma ) + cos (alpha - beta - gamma) + cos ( beta - gamma - alpha ) + cos ( gamma - alpha - beta )=

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to

If cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma , then (sin3alpha+sin3beta+sin3gamma)/(sin(alpha+beta+gamma)) is equal to