Home
Class 12
MATHS
Prove the identities: |[z, x, y],[ z^...

Prove the identities: `|[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]|` =x y z (x-y)(y-z)(z-x)(x+y+z)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: |(z, x, y),( z^2,x^2,y^2),(z^4,x^4,y^4)|=|(x, y, z),( x^2,y^2,z^2),(x^4,y^4,z^4)|=|(x^2,y^2,z^2),(x^4,y^4,z^4),(x, y, z)|=x y z(x-y)(y-z)(z-x)(x+y+z) .

Prove that |[x,x^(2),x^(4)],[y,y^(2),y^(4)],[z,z^(2),z^(4)]|=xyz(x-y)(y-z)(z-x)(x+y+z)

Prove that: |[y+z, z, y],[z, z+x, x], [y, x, x+y]|= 4 xyz

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

Prove that |[x+y+2z,x,y],[z,y+z+2x,y],[z,x,z+x+2y]|= 2(x+y+z)^(3)

Prove that |[y+z,z,y],[z,z+x,x],[y,x,x+y]]=4xyz

|[y+z, x, x] , [y, z+x, y] , [z, z, x+y]|= (i) x^2y^2z^2 (ii) 4x^2y^2z^2 (iii) xyz (iv) 4xyz

Solve that |(y+z,x,x^(2)),(z+x,y,y^(2)),(x+y,z,z^(2))|=(x+y+z)(x-y)(y-z)(z-x)

Show that abs([y+z ,x,x],[y,z+x,y],[z,z,x+y])=4xyz

Prove that Det [[x + y + 2z, x, y], [z, y + z + 2x, y], [z, x, z + x + 2y]] = 2 (x + y + z) ^ 3