Home
Class 14
MATHS
[" (3) "2=x+(1)/(1+(1)/(3+(1)/(4)))," A....

[" (3) "2=x+(1)/(1+(1)/(3+(1)/(4)))," A."x+41" ? "],[[" (a) "(18)/(17)," (b) "(21)/(17)," (c) "(13)/(17)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,2),(4,1)] , then A^-1= (A) [(-1,-2),(4,1)] (B) -1/7 [(1,2),(-4,-1)] (C) 1/7[(-1,-2),(4,1)] (D) 1/9[(1,2),(4,1)]

If A=[(1,2),(4,1)] , then A^-1= (A) [(-1,-2),(4,1)] (B) 1/7 [(1,2),(-4,-1)] (C) 1/7[(-1,-2),(4,1)] (D) 1/9[(1,2),(4,1)]

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

Let A={1,2,3,4}.Consider the following relations of A, R1={(1,2),(2,3),(3,4),(4,1)} , R2={(1,1),(1,2),(1,3),(1,4)} , R3={(1,1),(2,1),(3,1),(4,1)} , R4={(1,2),(3,4),(4,1)} . State whether or not each of these relations is a function of A into A.

Show that {:[(4,1),(2,7)][(2,1),(3,4)] ne [(2,1),(3,4)][(4,1),(2,7)]

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a) [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a) [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]

The domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) for real-valued x is (a). [-1/4,1/2] (b) [-1/2,1/2] (c) (-1/2,1/9) (d) [-1/4,1/4]