Home
Class 11
MATHS
If a, b are real and a^2+b^2=1, then sho...

If `a`, `b` are real and `a^2+b^2=1`, then show that the equation `(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))=a-ib` is satisfied y a real value of `x`.

Text Solution

Verified by Experts

let x e real
`(sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))`
`{(sqrt(1+x)-isqrt(1-x))/((a+x)+(1-x))}`
`(1+x-1_x-2isqrt(1-x^2))/2`
`(2x-2isqrt(1-x^2))/2`
`x-isqrt(1-x^2)`
`a=x`
`b=sqrt(1-x^2)`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b are real and a^(2)+b^(2)=1 then show that the equation (sqrt(1+x)-isqrt(1-x))/(sqrt(1+x)+isqrt(1-x))=a-ib is satisfied by a real value of x.

If a,b are real and a^(2)+b^(2)=1, then show that, the equation (1-ix)/(1+ix)=a-ib is satisfied by a real value of x.

If a,b are real and a^2+b^2=1 ,then prove that the equation. (1-ix)/(1+ix)=a-ib is satisfied for all real values of x.

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is

Number of real roots of the equation sqrt(x)+sqrt(x-sqrt((1-x)))=1 is