Home
Class 12
MATHS
tan(sec^(-1)x )=sin(cos^(-1)(1/sqrt5))...

`tan(sec^(-1)x )=sin(cos^(-1)(1/sqrt5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Value of x satisfying tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))

Value of x satisfying tan(sec^(-1)x)=sin(cos^(-1)((1)/(sqrt(5))))

tan(sec^(-1) (1/x))=sin(cos^(-1) (1/sqrt(5)))

If tan(cos^(-1)x)=sin^(-1)(sec^(-1)sqrt(5)) then x=

tan (sec ^ (- 1) x) = sin (cos ^ (- 1) ((1) / (sqrt (5))))

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))

tan(sin^(-1)((3)/(5))+cos^(-1)((3)/(sqrt(13)))=

tan (sec ^ (- 1) ((1) / (x))) = sin (cos ^ (- 1) ((1) / (sqrt (5))))

cos^(-1)x = tan^(-1)x , then: a. x^2=((sqrt(5)-1)/2) b. x^2=((sqrt(5)+1)/2) c. sin(cos^(-1)x)=((sqrt(5)-1)/2) d. tan(cos^(-1)x)=((sqrt(5)-1)/2)

sin(sin^(-1)x)=x;cos(cos^(-1)x)=x;tan(tan^(-1)x)=x;cot(cot^(-1)x)=x;sec(sec^(-1)x)=x;cos ec(cos ec^(-1)x)