Home
Class 10
MATHS
lim(r to oo)(1+3+5+7+...."n terms")/(2+4...

`lim_(r to oo)(1+3+5+7+...."n terms")/(2+4+6+8+...."n terms")=`_____.

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (1+3+5+7+...."n terms")/(2+4+6+8+...."n terms")= _____.

lim_(n rarr oo) (2+6+10+14+..."2n terms")/(2+4+6+8+..."n terms")= ______.

underset(n to oo)lim ((1+2+....+"n terms")(1^(2)+2^(2)+...+"n terms"))/(n(1^(3)+2^(3)+...+"n terms"))=

if (3+5+7...n terms)/(5+8+11+...10 terms)=7 find n.

If (1 + 3 + 5 + 7 …. Up to n terms) / (2 + 4 + 6 + 8 +… up to n terms)= 0.95, find n.

If (3+5+7+ . . . .+"n terms")/(5+8+11+ . . .. +"10 terms")=7 , then the value of n, is

underset(n to oo)lim (1+3+5+....+(2n-1))/(2+4+6+..2n)

lim_ (n rarr oo) (1 + 3 + 6 ++ (1) / (2) n (n + 1)) / (n ^ (3))

3.6+4.7+5.8+.....+(n-2) terms =

lim_ (n rarr oo n rarr oo n pto n terms) (n) / ((n + 1) sqrt (2n + 1)) + (n) / ((n + 2) sqrt (2 (2n + 2)) ) + (n) / ((n + 3) sqrt (3 (2n + 3)) + dots)