Home
Class 12
MATHS
Differentiate tan^(-1){(sqrt(1+sinx)+sqr...

Differentiate `tan^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))}`, `0 < x < pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

Cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx))}=

cot^(-1)((sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx)-sqrt(1+sinx)))=

Prove that cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))]

Differentiate w.r.t. 'x' tan^-1{(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))}, 0

y = cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))),find dy/dx.

Prove that cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), 0 lt x lt (pi)/(2), or x in (0, (pi)/(4)) .

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2, x in (0,pi/4)

Prove that: cot^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))}=pi/2-x/2 , if pi/2 < x < pi

If y = tan^(-1) [(sqrt(1+sinx) + sqrt(1-sinx ))/(sqrt(1+sinx)-sqrt(1-sin x))], 0 lt xlt pi/2 then dy/dx =