Home
Class 12
MATHS
A straight line passes through a fixed p...

A straight line passes through a fixed point `(n,k)`, `n,k>0` and intersects the coordinate axes at `P(a,0)` and `Q(0,b)`, Show that the minimum value of `(a+b)` is `(sqrt(n)+sqrt(k))^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

A straight line passing through the point (a,b) [where agt0and bgt0 ] intersects positive coordnate axes at the points p and Q respectively . Show that the minimum value of (OP+OQ) is (sqrta+sqrtb)^(2) .

A straight line passes through the fixed point [1/k,1/k] . The sum of the reciprocals of its intercepts on the coordinate axes is

Let (h,k) be a fixed point,where h>0,k>0. A straight line passing through this point cuts the positive direction of the coordinate axes at the point P and Q. Find the minimum area of triangle OPQ,O being the origin.

Let (h , k) be a fixed point, where h >0,k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the point Pa n dQ . Find the minimum area of triangle O P Q ,O being the origin.

Let (h , k) be a fixed point, where h >0,k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the point Pa n dQ . Find the minimum area of triangle O P Q ,O being the origin.

Let (h , k) be a fixed point, where h >0,k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the point Pa n dQ . Find the minimum area of triangle O P Q ,O being the origin.

Let (h , k) be a fixed point, where h >0,k > 0. A straight line passing through this point cuts the positive direction of the coordinate axes at the point Pa n dQ . Find the minimum area of triangle O P Q ,O being the origin.

If a+b+c=0 the straight line 2ax+3by+4c=0 passes through the fixed point

Let (h,k) be a fixed point where hgt0,kgt0 . A straight line passing through this point cuts the positive directions of the coordinate axes at the points P and Q . Find the minimum area of the triangle OPQ , O being the origin.