Home
Class 12
MATHS
1CLASSThe function f(x) = tan-1(sinx + c...

1CLASSThe function f(x) = tan-1(sinx + cosx) is an increasing function in-(1) (1/4, 1/2) (2)(-1/2, T/4) (3) (0, 1/2)[AIEEE-2007](4) (-1/2, 1/2)10

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing function in (1) (pi/4,pi/2) (2) (-pi/2,pi/4) (3) (0,pi/2) (4) (-pi/2,pi/2)

The function f(x) = tan ^-1 x - In(1 + x^2) is increasing for

f(x) = tan^-1(sinx+cosx) is strictly decreasing function on (pi/4,pi/2)

The function f(x)=tan^(-1)x-In(1+x^(2)) is increasing for

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (1)((pi)/(4),(pi)/(2))(2)(-(pi)/(2),(pi)/(4))(3)(0,(pi)/(2))(4)(-(pi)/(2),(pi)/(2))^(((pi)/(4)),(pi)/(2))^(((pi)/(4)))(2)

Show that f(x)=tan^(-1)(sinx+cosx) is an increasing function on the interval (0,\ pi//4) .

Show that f(x)=tan^(-1)(sinx+cosx) is decreasing function on the interval (pi/4,pi/2)dot