Home
Class 12
MATHS
the last two digits in X=sum(k=1)^100 k!...

the last two digits in `X=sum_(k=1)^100 k!`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the last two digits in the number 11^(100)

Evaluate the limit: lim_(x->1)(sum _(k=1) ^100 x^k-100)/(x-1)

Find the last digit of the sum 19^(81)+4^(9k),KinN .

Sum of the last 3 digits of the number 7^(100)-3^(100) is

Let S_(k) denote sum of infinite geometric series (K=1,2,3,.......), where first term is (k^(2)-1) and common ratio is (1)/(K), then the unit digit of the sum (sum_(k=1)^(oo)(S_(k))/(2^(k-1))), is

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))

Find the sum of the series sum_(k=1)^(360)(1/(ksqrt(k+1)+(k+1)sqrt(k)))

Evaluate lim_(x to 1) sum_(k=1)^(100) x^(k) - 100)/(x-1).

Evaluate lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).