Home
Class 12
MATHS
lim(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/(...

`lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1) is equal to 1 (b) 0 (c) 2 (d) none of these

("lim")_(x to 0)(x^4((cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)))"is equals to" (a)1 (b) 0 (c) 2 (d) none of these

lim_(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (b) 0 (c) 2 (d) none of these

lim_(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (b) 0 (c) 2 (d) none of these

("lim")_(xvec0)(x^4(cot^4x-cot^2x+1)/((tan^4x-tan^2x+1)i se q u a lto 1 (b) 0 (c) 2 (d) none of these

lim_(xto0)(tan2x)/x

Lim_(x rarr cot^(-1)(-1))((tan^(3)x-2tan x-1)/(tan^(5)x-2tan x-1)) is equal to

lim_(x to 0)(x cot(4x))/(sin^(2) x cot^(2)(2x)) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to