Home
Class 12
MATHS
Show that log(x+sqrt(1+x^2)) < x when x ...

Show that `log(x+sqrt(1+x^2)) < x` when x > 1

Promotional Banner

Similar Questions

Explore conceptually related problems

log (x+sqrt(x^2-1))

Show that 1+x ln(x+sqrt(x^(2)+1))>=sqrt(1+x^(2)) for all x>=0

Show that 1+x ln (x+sqrt(x^2+1))geqsqrt(1+x^2) for all xgeq0.

Show that 1+x ln (x+sqrt(x^2+1))geqsqrt(1+x^2) for all xgeq0.

Show that 1+x ln (x+sqrt(x^2+1))geqsqrt(1+x^2) for all xgeq0.

If x gt 0 , show that, 1+x log (x+sqrt(x^(2)+1)) gt sqrt(1+x^(2))

Show that 1 + x log (x + sqrt (x ^(2) + 1)) ge sqrt ( 1 + x ^(2)) AA x ge 0

Show that f(x)=(x)/(sqrt(1+x))- ln (1+x) is an increasing function for x gt -1 .

If x> - 1 , show that x/(sqrt(1+x)) -log(1+x) + 9 is an increasing function of x.

Show that f(x) = log [x + sqrt(1 + x^2)] is a odd function.