Home
Class 12
MATHS
If f(x)=[x tan^-1 x+sec^-1 (1/x), x in (...

If `f(x)=[x tan^-1 x+sec^-1 (1/x), x in (-1,1)-{0} and pi/2, if x=0,` then `f'(0)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

f(x) = (2x - sin^(-1))/(2x + tan^(-1) (x)) is continuous at x = 0 then f(0) =

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

f(x)=[tan(pi/4+x)]^(1/x), x!=0 and f(x)=k, x=0 is continuous at x=0 then k=

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If f(x) = int (x^(2)+sin^(2)x)/(1+x^(2)) sec^(2)x dx and f(0) = 0, then f(1) =