Home
Class 11
MATHS
The minimum value of atan^2x+bcot^2x equ...

The minimum value of `atan^2x+bcot^2x` equals the maximum value of `asin^2theta+bcos^2theta` where `a > b > 0.` The `a/b` is 2 (b) 4 (c) 6 (d) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of a tan^2 x+b cot^2x equals the maximum value of a sin^ 2 theta + b cos^2 theta where a gt b gt 0 when

The minimum value of a tan^(2)x + b cot^(2)x equals the maximum value of asin^(2) theta+b cos^(2) theta where a gt b gt 0. Then a/b is.

The minimum value of a tan^2x+bcot^2x equals the maximum value of a sin^2theta+bcos^2theta where agtbgt0, then a equals to

Minimum value of a^2cos e c^2theta+b^2sec^2theta is (where a b >0 )

Minimum value of a^2cos e c^2theta+b^2sec^2theta is (where a b >0 )

If agt0,bgt0 and the minimum value of a sin^(2)theta+b cosec^(2)theta is equal to maximum value of a sin^(2)theta+b cos^(2)theta, then (a)/(b) is equal to

Maximum value of sin^4 theta + cos^4 theta is .............. A) 2 B) (1)/(2) C) -1 D) 1

The minimum value of 3tan^2theta+12cot^2theta is (A) 6 (B) 15 (C) 24 (D) none of these

If asin^2 theta +bcos^2 theta =c .Show that tan^2 theta =(c-b)/(a-c)

If tan theta=a/b , then the value of b cos 2theta+asin 2 theta is