Home
Class 11
MATHS
If the cirles x^2+y^2=2 and x^2+y^2-4x-4...

If the cirles `x^2+y^2=2` and `x^2+y^2-4x-4y+lambda=0` have exactly three real common tangents then `lambda=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lf the circle x^(2)+y^(2)=2 and x^(2)+y^(2)-4x-4y+lamda=0 have exactly three real common tangents then lamda=

Ilf the circle x^(2)+y^(2)=2 and x^(2)+y^(2)_4x-4y+lamda=0 have exactly three real common tangents then lamda=

If the length of the tangent from (1,2) to the circle x^(2)+y^2+x+y-4=0 and 3x^(2)+3y^(2)-x-y-lambda=0 are in the ratio 4:3 then lambda=

The range of values of lambda for which the circles x^(2)+y^(2)=4 and x^(2)+y^(2)-4lambda x + 9 = 0 have two common tangents, is

The range of values of lambda for which the circles x^(2)+y^(2)=4 and x^(2)+y^(2)-4lambda x + 9 = 0 have two common tangents, is

The range of values of lambda for which the circles x^(2)+y^(2)=4 and x^(2)+y^(2)-4lambda x + 9 = 0 have two common tangents, is

If the length of the tangent from (1,2) to the circle x^(2)+y^2+x+y-4=0 and 3x^(2)+3y^(2)-x+y+lambda=0 are in the ratio 4:3 then lambda=

If the two circles x^(2) + y^(2) =4 and x^(2) +y^(2) - 24x - 10y +a^(2) =0, a in I , have exactly two common tangents then the number of possible integral values of a is :