Home
Class 12
MATHS
For any three non-zero vectors veca,vecb...

For any three non-zero vectors `veca,vecb` and `vec c` if `|(vecaxxvecb). vec c|=|veca||vecb||vec c|` then `veca.vecb+vecb.vec c+vecc .veca=`

Promotional Banner

Similar Questions

Explore conceptually related problems

For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb||vecc| holds iff

veca, vecb, vec c are three vectors such that veca + vecb + vec c = vec0, |veca| =1, |vecb| =2, |vec c|=3, then : veca.vecb + vecb .vecc+ vecc.veca is equal to :

If veca, vecb, vecc are three vectors such that veca + vecb + vecc= vec0 and |veca | =2, |vecb|=3, |vecc| = 5, then value of veca. vecb+vecb.vec c+vec c. veca is :

Statement 1: If V is the volume of a parallelopiped having three coterminous edges as veca, vecb , and vecc , then the volume of the parallelopiped having three coterminous edges as vec(alpha)=(veca.veca)veca+(veca.vecb)vecb+(veca.vecc)vecc vec(beta)=(veca.vecb)veca+(vecb.vecb)vecb+(vecb.vecc)vecc vec(gamma)=(veca.vecc)veca+(vecb.vecc)vecb+(vecc.vecc)vecc is V^(3) Statement 2: For any three vectors veca, vecb, vecc |(veca.veca, veca.vecb, veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc)|=[(veca,vecb, vecc)]^(3)

Vectors veca,vecb and vec c are such that vec a+vec b+vec c =vec0 and |veca||=2,|vecb|=4 and |vec c|=6 , prove that, veca.vecb+vecb.vec c+vecc.veca=-28 .

If veca , vecb ,vec c are the 3 vectors such that |veca| = 3, |vecb| = 4,|vec c| = 5, |veca + vecb + vec c | = 0 then the value of veca.vecb + vecb.vec c + vec c .vec a is :

If veca, vecb, vecc are three vectors such that veca + vecb+ vecc =0 and |veca| =5, |vecb|=12.|vecc|=13, then find vecavecb+vecb vec c + vec c veca

If [veca+vecb, vecb+vec c, vec c+veca]=8 then [veca, vecb, vec c] is

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb)+(vecccxxveccc\') is (A) veca+vecb+vec (B) veca\'+vecb\'+vec\' (C) 0 (D) none of these

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to