Home
Class 12
MATHS
[" Q.13"|" If "A=[[0,1],[0,0]]" ,prove t...

[" Q.13"|" If "A=[[0,1],[0,0]]" ,prove that "(aI+bA)^(n)=a^(n).I+na^(n-1)" b "A" where I is a unit "],[" matrix of order "2" and "n" is a positive integer."]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[0100], prove that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is a unit matrix of order 2 and n is a positive integer.

If A=[0 1 0 0] , prove that (a I+b A)^n=a^n\ I+n a^(n-1)\ b A where I is a unit matrix of order 2 and n is a positive integer.

Let A=[[0,1],[0,0]] , prove that: (aI+bA)^n = a^(n-1) bA , where I is the unit matrix of order 2 and n is a positive integer.

Let A = [[0,1],[0,0]] , show that (aI + bA)^n = a^nI + na^(n-1) bA , where I is the identity matrix of order 2 and n in N

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

Let A=[(0,1),(0,0)] , show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA , where I is the identity matrix of order 2 and n in N .

Let A=[[0,10,0]] show that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is the identity matrix of order 2 and n in N

Let A=[[0, 1],[ 0, 0]] show that (a I+b A)^n=a^n I+n a^(n-1)b A , where I is the identity matrix of order 2 and n in N .