Home
Class 12
MATHS
If f : R -> R, f(x) =x^3 + x, then f is...

If `f : R -> R, f(x) =x^3 + x`, then f is-

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R to R, f(x) =x^(3)+1 , then f is :

f:R rarr R; f(x)=(3-x) then fof(x) is

If f: R rarr R , f(f(x)) = (f(x))^(2) , then f(f(f(x) ))is equal to

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

f: R rarr R , f(x) = (x-1) (x-2)(x-3) then f is ........

If f: R ->R is defined by f(x) = x^2- 3x + 2 , find f(f(x)) .

If f: R to R is defined by: f(x-1) =x^(2) + 3x+2 , then f(x-2) =

Which of the following are one-one ,onto (or) bijections? Justify your answer. (i) f: R to R, f(x) =(2x+1)/3 (ii) f: N to N, f(x) = 2x+3 (iii) f:[0, infty) to [0,infty), f(x) = x^(2) (iv) f: R to R, f(x) =x^(2) (v) f: R to (0, infty), f(x) = 5^(x) (vi) f: (0, infty) to R, f(x) = log_(e)^(x) (vii) f: R to R, f(x) = {{:(x, if x gt 2),(5x-2, if x le 2):}