Home
Class 11
MATHS
If x1a n dx2 are the roots of the equat...

If `x_1a n dx_2` are the roots of the equation `e^2*x^(lnx)=x^3` with `x_1> x_2,` then `x_1=2x_2` (b) `x_1=x_2^2` `(c) 2x_1=x_2^2` (d) `x_1^2=x_2^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_1a n dx_2 are the roots of the equation e^2 x^(lnx)=x^3 with x_1> x_2, then x_1=2x_2 (b) x_1=x2 2 2x_1=x2 2 (d) x1 2=x2 3

If x_1a n dx_2 are the roots of the equation e^2 x^(lnx)=x^3 with x_1> x_2, then x_1=2x_2 (b) x_1=x2 2 2x_1=x2 2 (d) x1 2=x2 3

If x_(1) and x_(2) are the roots of the equation e^(2)*x^(ln x)=x^(3) with x_(1)>x_(2), then x_(1)=2x_(2) (b) x_(1)=x_(2)^(2)(c)2x_(1)=x_(2)^(2)( d) x_(1)^(2)=x_(2)^(3)

If x_1and \ x_2 are the solution of the equation x^(3log_10^3x-2/3log_(10)x)=100 root(3)10 then- a. x1x2=1 b. x1*x2=x1+x2 c. log_(x2)x1=-1 d. log(x_1*x_2)=0

If x_1and \ x_2 are the solution of the equation x^(3log_10^3x-2/3log_(10)x)=100 root(3)10 then- a. x1x2=1 b. x1*x2=x1+x2 c. log_(x2)x1=-1 d. log(x_1*x_2)=0

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/2(cos^2theta)=0, then find the maximum value of x_1^2+x_2^2

The number of solutions of the equation : x_2-x_3=1 -x_1+2x_3=2 x_1-2x_2=3 is :

If x_1, a n dx_2 are the roots of x^2+(sintheta-1)x-1/(2cos^2theta)=0, then find the maximum value of x1 2+x2 2dot