Home
Class 12
MATHS
If e^y=y^x , prove that (dy)/(dx)=((logy...

If `e^y=y^x` , prove that `(dy)/(dx)=((logy)^2)/(logy-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y^x=e^(y-x), prove that dy/dx=(1+logy)^2/logy .

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

Solve: x(dy)/(dx)=y(logy-logx-1)