Home
Class 11
MATHS
Show that if iz^3+z^2-z+i=0, then |z|=1...

Show that if `iz^3+z^2-z+i=0`, then `|z|=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If iz^3+z^2-z+i= 0 , then abs(z) =

If iz^3+z^2-z+i = 0 , then show that |z|=1.

If iz^(3)+z^(2)-z+i=0 then show that |z|=1.

if iz^3+z^2-z+i=0 then show that absz=1

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.

If 8iz^(3)+12z^(2)-18z+27i=0 then 2|z|=

If 8iz^3+12z^2-18z+27i=0, then (a). |z|=3/2 (b). |z|=2/3 (c). |z|=1 (d). |z|=3/4

If 8iz^3+12z^2-18z+27i=0, then (a). |z|=3/2 (b). |z|=2/3 (c). |z|=1 (d). |z|=3/4