Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=pi and x=ky then...

If `sin^(-1)x+sin^(-1)y=pi` and `x=ky` then find the value of `(39)^(2k)+5^k`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1 x + sin^-1 y = - pi , then find the values of x and y

If sin^(-1)x+sin^(-1)y+sin^(-1)z =(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1x+sin^-1y+sin^-1z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

If sin^(-1)x+sin^(-1)y=pi/3 and cos^(-1)x-cos^(-1)y=pi/6 , find the values of x and y .

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If 2 tan ^(-1) x = sin ^(-1) k then the value of k is -

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then then the value of (x+y+z) is -